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Dinosaurs, like other tetrapods, grew more quickly just after hatching than later in life. However, they did not grow like most other
non-avian reptiles, which grow slowly and gradually through life. Rather, microscopic analyses of the long-bone tissues show that
dinosaurs grew to their adult size relatively quickly, much as large birds and mammals do today. The ®rst birds reduced their adult
body size by shortening the phase of rapid growth common to their larger theropod dinosaur relatives. These changes in timing
were primarily related not to physiological differences but to differences in growth strategy.

F
or most of the 160 years since dinosaurs were named,
they have been considered typical, if overgrown, reptiles,
and it was assumed that they grew at rates broadly similar
to those of extant reptiles1. Indeed, there was no par-
ticular reason to think otherwise, even though their

upright stance and parasagittal gait led Richard Owen, in naming
them, to put them in a completely new group of Reptilia. However,
in the 1970s interest in the question of dinosaur metabolism
renewed ideas about their growth strategies and rates2±5. Some
physiological models concluded that dinosaurs could have been
perfectly `good reptiles'6 whose large size gave them the metabolic
bene®ts of inertial homoiothermy without truly departing from an
ectothermic strategy7. However, a growing body of literature on bone
growth rates suggests that, whereas dinosaurs may not have grown at
rates exactly like those of extant birds and mammals, they seem
generally to have been more like them than like other extant reptiles.

Evidence for this shift in perspective comes largely from bone
histology, the microstructural characteristics of bone that re¯ect
ontogenetic, environmental, mechanical and phylogenetic factors8.
Recently renewed efforts have begun to use these routinely sampled
bone tissues to calculate growth rates9±20.

Timing the growth of extinct animals
To time the growth of extinct animals, two lines of evidence are
generally used, and both depend on homologous features in extant
vertebrates and on simple actualistic reasoning (using the features
of extant organisms to interpret the fossil record). First, the type of
primary (appositional) bone tissue indicates the overall range of
growth rate. A given type of primary bone tissue grows at the same
range of rates in any taxon21; hence, it is presumed that a certain
kind of tissue deposited in an extinct animal would have grown at
the approximate rates that it does in animals today. Second, bone
growth is often punctuated by the deposition of various rings, lines
or annular structures that may re¯ect cyclical annual growth,
seasonal stress or other endogenous rhythms2,4,22,23, so they may be
skeletochronological indicators. However, consideration of extant
vertebrates demonstrates that the biological meaning of these
indicators must be assessed on a case-by-case basis. Some growth
rings are of relatively avascular bone that interrupts vascular tissues,
representing a real change in the type of deposition2,4; others merely
comprise lines of temporary cessation of growth and even slight
erosion of the bone surface2,11,24; and some simply represent inde®-
nite pauses with no erosion9,16,24. Generally, ectothermic animals
extensively produce rest lines that are annual or seasonal, but
endothermic animals can also do so, even when temperature and
food supply are maintained through the year23,25. Moreover, differ-
ent bones in the same skeleton can have sharply differing numbers
of growth lines11,24; the distance between successive growth lines
does not always decrease regularly in some taxa12; and some taxa

closely related to those with copious growth lines may show none
at all26. Obviously the whole issue of bone `growth lines' is linked
more to organ-speci®c developmental dynamics, species-speci®c life-
history strategies, and population-level interactions with their
environments, than to overall patterns of thermometabolic Gestalt11.

Dinosaurian versus reptilian growth rates
Comparing these two histological lines of evidence, our own
investigations of extant and extinct archosaurs (including birds),
as well as a survey of the published literature on bone histology,
reveal a dichotomy between those archosaurs related to crocodiles
and those related to birds and dinosaurs (Fig. 1). This distinction
can be traced back to the division of the two lineages at least by the
Middle Triassic, over 230 million years ago. In the hadrosaur
Maiasaura, for example, the kinds of tissue typically deposited
throughout the cortex of the long bones imply growth rates which
suggest that maturity was reached at about seven years old and seven
metres long11. This estimate is consistent with counts of growth lines
in the largest long bones, and the amount of tissue deposited
between successive lines is commensurate with expected annual
growth at rates re¯ected by the given bone tissues11. (However, like
extant mammals and birds, and other extinct dinosaurs, Maiasaura
appears to have been growing too rapidly to lay down a growth line
in its ®rst year.) Similar growth rates are now estimated even for
large sauropod dinosaurs9,13,14 and large pterosaurs27. Such rates are
in sharp contrast to those assessed for crocodiles, even gigantic ones
like the Cretaceous Deinosuchus, which could exceed eight metres in
length but took 50 years to do so15 (Fig. 2).

These results support the hypothesis that large dinosaurs grew
more like large extant birds and mammals than like extant reptiles,
even large ones2,4,11,18. And, if growth rates provide any indication of
underlying basal metabolic rates, they suggest that these dinosaurs
were not like typical ectotherms2,3,6,10,11. Finally, although most
extant birds reach maturity too rapidly to lay down growth
lines28,29, some extinct birds, such as the two-metre-tall Eocene
neognath Diatryma and the three-metre-tall moa, Dinornis, pro-
duced growth lines in their long bones (Fig. 3), suggesting not that
they were ectothermic, but that the production of these lines was
merely a function of endogenous rhythms17,24,30.

In contrast to large dinosaurs and pterosaurs, small ones appar-
ently grew more slowly. Their long bone cortices were less well
vascularized, the vessels were primarily longitudinal, and the bones
may show more closely spaced growth lines. These data would seem
to ®t a model describing dinosaurs as essentially reptilian, perhaps
with somewhat higher basal metabolic rates, and large dinosaurs
would grow quickly merely by virtue of inertial homoiothermy.
Against this quite reasonable model, however, small mammals and
birds also deposit bone of relatively low vascularity, with predomi-
nantly longitudinal vessels and lines of arrested growth (LAGs)28,29,
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but are clearly endothermic2,3. Moreover, the cortical bone of small
dinosaurs and pterosaurs is primarily ®bro-lamellar (not lamellar-
zonal as in crocodiles and other ectotherms), re¯ecting more rapid
growth, and the tissues are typically far better vascularized than in
typical reptiles. These differences in patterns seem to begin before
hatching10. Furthermore, extant taxa of large adult size typically
grow at rates absolutely higher than related smaller taxa, regardless
of their physiologies1, so this pattern would be expected in dino-
saurs. Even the most basal dinosaurs, such as the 2.5-metre-long
Herrerasaurus and the 1.5-metre-long Coelophysis, grew at high
rates, suggesting that smaller dinosaurs (for example, Scutellosaurus
and Orodromeus) grew at secondarily slow rates (Fig. 1).

How ancient birds grew
These generalizations relating bone-tissue type and growth rates,
when seen in phylogenetic perspective, can provide insight into how
ancient birds grew and how their small size evolved. Compared with
nearly all of their immediate relatives among the theropod dino-
saurs, the dromaeosaurs and troodontids, the ®rst birds were small31

(Fig. 4). Close bird relatives generally ranged from 1.1 to 3.0 metres
in body length, with femur lengths of 14 to 30 centimetres. An
exception is the recently discovered Microraptor32, whichÐif truly
adultÐis small enough (femur length 5.3 centimetres) to demon-
strate that non-avian maniraptorans of suitable size for avian
ancestry indeed existed. By comparison, Archaeopteryx, the most
basal bird, reached a body length of approximately 50±60 centi-

metres (femur length about 3.2±7.0 centimetres), smaller than its
feathered non-avian dinosaur relatives33.

Previous analyses34 of the bone tissue histology of two types of
basal Mesozoic birds reported generally low vascularization and
even a nearly avascular cortex in two enantiornithine femora, with
several LAGs (Fig. 3). The lack of vascular canals and the persistence
of LAGs are features commonly found in ectothermic extant reptiles
and amphibians22,30. Such features prompted the inference34 that
these basal birds had not fully attained avian physiological levels and
may even have been intermediate between `typical' reptilian me-
tabolism and endothermy. Analyses of Hesperornis and Ichthyornis,
two Cretaceous birds closer to extant forms, showed higher vascu-
larity and an absence of LAGs, suggesting gradual attainment of the
fully endothermic metabolism of extant birds35. Other workers36

suggested from similar histological studies that the basal bird
Confuciusornis was endothermic, but that its endothermy had
evolved independently of neornithine (extant) birds.

The inferences drawn from these histological observations are
reasonable if one considers the distributions of such features only in
extant vertebrates (ectothermic reptiles versus endothermic mam-
mals and birds). However, the same evidence in a phylogenetic and
ontogenetic context, including extinct forms (Fig. 4), suggests a
different picture for basal birds5,17 (Fig. 3). Like all other theropod
outgroups of birds studied, ranging from troodontids and tyran-
nosaurs out to allosaurs, coelophysids and even herrerasaurs, the
small theropods from which birds evolved had well vascularized
bone tissues16 (K.P. et al. unpublished observations). The long bones
of the hindlimbs in particular consist almost entirely of tissues
displaying a ®bro-lamellar pattern4. This pattern, which also pre-
dominates in large extant birds and mammals, typically grows
continuously at rates of 10±60 micrometres per day, much faster
than the tissues of `typical' extant reptiles8,22,37. LAGs are observed
throughout the cortices of the long bones of most non-avian
theropods and other dinosaurs, but they are also known in the long
bones of mammals and some extant birds, especially in the outermost
cortex where growth slows28,29. Thus, in these taxa they may
represent little more than evidence of environmentally mediated
endogenous patterns of cyclical growth with no general physiological
implications24. Slow-growing bone does not necessarily imply low
metabolic rates, as can be seen from humans, whose bones grow
much more slowly than those of most mammals, but who are
obviously endothermic.
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Figure 2 Comparative growth histories of the hadrosaurian dinosaur Maiasaura11 and

the giant Cretaceous crocodile Deinosuchus, with `typical' crocodiles for comparison15.

Deinosuchus grows slightly more rapidly and extends its active growth curve more than

typical crocodiles, but the curve for Maiasaura, a typical large dinosaur with respect to

its growth pro®le, is qualitatively different, reaching approximately the same adult size in

about seven years, rather than 40 years or more. Although data on partial growth series

have been collected for some dinosaurs9,10,12±14,16,18,20, none but Maiasaura is currently

represented from embryo to adult.
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If avian precursors had well vascularized, fast-growing bone, how
can the relatively avascular, slow-growing patterns seen in some
basal birds be explained? One possibility is that the limited tissue
samples of enantiornithines may simply represent old individuals,
in which growth has nearly ceased. Birds, like other theropods, have
a thin cortex in which 75 per cent or more of earlier deposited tissue
is resorbed, leaving no record in adults of presumably faster-
growing juvenile tissues16,17.

How birds got small
We propose an alternative hypothesis that takes into account both
ontogeny and phylogeny. Preliminary histological observations of
the basal bird Confuciusornis36 (Fig. 3) do not suggest overall low
growth rates, and a thorough study of this bird con®rms active
growth during a large part of its ontogeny at least (K.P. et al.
unpublished observations). Conversely, bone tissue patterns indicate

that some basal birds, such as some enantiornithines and perhaps
Patagopteryx, grew more slowly than extant birds of similar size34,35.
Thus they reached a much smaller adult size than other theropods,
but they still took longer to grow to this smaller size than do extant
birds. Their bone cortices suggest that they could have accom-
plished this by shortening the early rapid-growth phase and
extending the more adult-like, slower-growth phase seen in some
enantiornithine bones5,17,34.

Further evidence for differences in growth curves between basal
and neornithine birds comes from estimates of growth rates in the
long bones of Confuciusornis17,31 (K.P. et al. unpublished observa-
tions). If the tibia is accorded a relatively slow growth rate of 4±6
micrometres per day, as its moderately vascularized cortex and
mostly longitudinally oriented vascular canals indicate by compari-
son with the growth curves of extant birds37, it would have reached
adult size in just over half a year. This estimate is commensurate
with those for the humerus (26 weeks), radius (21±31 weeks), and
femur (35±48 weeks), if allowances are made for the range of
growth curves37 re¯ected in their respective tissues17. In contrast,
most extant birds of the size of Confuciusornis reach adult size in
four to eight weeks38, but the larger theropod dinosaurs must have
taken much longer, even at higher growth rates.

This hypothesis presumes that cortical bone tissue types that
grow at speci®c rates in extant animals grew at similar rates in
extinct forms. If these basal birds grew at such moderate overall rates
(comprising a short phase of rapid growth and a protracted later
phase of slower growth), it would explain why the known specimens
of Archaeopteryx have a twofold size range, yet ®t a single allometric
growth trajectory39.

A strict test for heterochrony40, often invoked in connection with
the origin of birds5,17, requires complete comparative ontogenies of
all forms under study, which is not possible in extinct tetrapods.
However, the distribution of primitive and derived features in a
phylogenetic series of related taxa provides a secondary test that
re¯ects the direction of evolutionary changes and allows inferences
about speci®c developmental mechanisms.
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© 2001 Macmillan Magazines Ltd



If birds had simply reduced adult size by becoming paedo-
morphic (sensu ref. 40), they would have retained a juvenile shape
at this reduced adult size (as, for example, if humans were to slow
development so as to achieve adulthood and sexual maturity at a
shape and size now characteristic of ®ve-year-olds). Evidence for
this pattern includes the persistence of features associated with
juveniles of related taxa, and sometimes in the delay in, or absence
of, fusion of skeletal elements commonly fused in the adults of
outgroup taxa. However, in adult basal birds the forms and
proportions of juvenile ancestors do not reappear. Rather, they
show a derived development of proportional trends such as the
further elongation of lower limbs, arms and hands, the beginnings
of fusion of some skeletal elements (carpometacarpus, tibiotarsus,
tarsometatarsus and pygostyle), and the further development of
feathers5,17,31. These patterns instead suggest a combination of
overall dwar®ng of adult size, accompanied by a form of peramor-
phosis of many skeletal forms and proportions. In other words,
mosaic developmental changes carried some features of shape to
more derived states even as body size was reduced40. These changes
are distinct from strict proportional dwar®sm, because some shape
parameters (such as the elongated arms and feathers) experienced
positive allometry even as size decreased (acceleration sensu ref. 40).
Reduction in body size was almost certainly associated with a
reduction of the time needed to reach adult size. The relative
elongation of forelimbs and feathers, coincident with a phyletic
reduction in adult size, would have been advantageous to the
inception of ¯ight by decreasing wing loading and improving the
power-to-weight ratio.

A boost in growth rates for later birds
Birds more closely related to extant groups (Neornithes, Fig. 4)
gradually acquired the histological features of typical extant bird
bone35. Vascularity increased and LAGs were generally reduced or
lost, although they persist at least in the outer cortex of some extant
and fossil crown-group birds28,29. The return to predominantly fast-
growing bone tissue in more derived small birds (Neornithes and
their relatives) suggests a trend to reach adult size quickly, within a
shorter maturation time than in basal birds and non-avian ther-
opods. (This pattern can be seen only in analysis of the 90 per cent of
the growth trajectory comprising rapidly growing bone that is
resorbed throughout ontogeny.) The acceleration of growth rates
signalled further changes in life-history strategy that may have
facilitated the rapid growth of some taxa to ¯edging size38. Large
ground birds such as ratites have converged in body size and bone
histology with many Mesozoic non-avian theropods (Fig. 3). This
seems to have resulted in large part from a secondary extension of
the rapid-growth phase of their developmental trajectory that
allows them to attain a large size quickly19.
Note added in proof: We are delighted that the independent results of
Erickson et al.41 (this issue) so closely re¯ect and complement our
own. Note that our measurements are linear, whereas theirs are
extrapolated mass estimates, which accounts for many differences in
the curves. Though more work is needed, we conclude that our
independent studies generally characterize dinosaur growth strate-
gies with substantial accuracy. M
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