Natural Sciences 360 Legacy of Life Lecture 5 Dr. Stuart S. Sumida

Plants

Getting on Land and What We Eat

(In this course, a KEY **INNOVATION** is a feature that is not only a synapomorphy of a group, but also a feature that allows or facilitates a broad adaptive radiation.)

THREE GREAT KINGDOMS OF MEGAEUKARYOTIC PHOTOAUTOTROPHS:

•RED SEAWEEDS (ALGAE)

•BROWN SEAWEEDS (ALGAE)

•PLANTAE

OUR FOCUS ON PLANTS:

The Water to Land Transition

Flowering Plants

The Water to Land Transition: (How do you keep from drying out and falling over?)

•Cell Walls

•Cuticle – waxy layer on aerial surfaces

- •Stomata (singular = stomate) openings that can be controlled to prevent water loss
- Development of Embryos
- •Spores for dispersal
- •Plus TWO KEY INNOVATIONS

KEY INNOVATIONS OF LAND PLANTS:

Alternation of generations

Vascular Tissues

The Water to Land Transition: (How do you keep from drying out and falling over?)

•Cell Walls

•Cuticle – waxy layer on aerial surfaces

- •Stomata (singular = stomate) openings that can be controlled to prevent water loss
- Development of Embryos
- •Spores for dispersal
- •Plus TWO KEY INNOVATIONS

KEY INNOVATIONS OF LAND PLANTS:

Alternation of generations

Vascular Tissues

Cell Walls

Closed stomate

Guard Cells

20 µm 1

Open Stomate

Closed Stomate

OPENING AND CLOSING MECHANISM OF STOMATA

Alternation of "Generations":

An alternation between form that makes gametes (sperm and eggs) called the GAMETOPHYTE GENERATION.

And

The form that makes the spores for distribution called the SPOROPHYTE GENERATION.

VASCULAR TISSUE

Tissues for:

transporting water – XYLEM

transporting food (sugars, etc.) – PHLOEM

Vascular Plants = "Tracheophyta"

Sphenophyta (Horsetails) Pterophyta (Ferns) "Gymnosperms" Cycadophyta Ginkophyta Coniferophyta Anthophyta (includes flowering plants)

Equisetum arvense

Sphenophyta (Horsetails and their relatives) From Late Devonian (dominant and common in Late Devonian and Carboniferous)

Adiantum

Pterophyta (ferns) Known since the Carboniferous

Cycadophyta (cycads) Cycas Known from Carboniferous

Ginkophyta Known from end of Cretaceous (end of age of dinoaurs)

Coniferophyta ("evergreens" or "conifers") Known since Late Carboniferous

Pinus aristata

Coniferophyta ("evergreens" or "conifers") Known since Late Carboniferous Anthophyta (includes flowering plants)

Some types known since Jurassic, but flowering plants known from end of Cretaceous

Flowering Plants

Monocots – Grasses and others

Dicots – Flowers that give fruits

The MONOCOTS comprise one-quarter of all flowering plant species. They include lilies, orchids, agaves, palms, and grasses.

Flowering Plants:

So just what ARE you eating?

Flowering plants produce not only seeds, but fruits.

So what exactly is a fruit?

Or a vegetable for that matter?

To understand, we have to turn to flowers and flower structure...

